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SUMMARY

The periodic boundary displacement protocol leading to the optimum wall-to-fluid heat-transfer rate, or to
the most efficient mixing rate, in 2-D annular Stokes flows is determined by calculating the steady periodic
velocity and temperature fields. To obtain the steady periodic state one usually solves the dynamical system
obtained after the spatial coordinates have been discretized. Here, we calculate the steady periodic state
using an implicit method based on the discretization of the time coordinate over a period and the asymptotic
regime is enforced by the periodicity condition in the computed temperature field. The obtained system
of equations is solved using a Newton-type iterative algorithm with invariant Jacobian. At each iteration
step, the sparse linearized system is solved using a multi-grid algebraic technique of rapid convergence.
From a computational point of view and for the problem considered here, this method is an order of
magnitude faster than the one based on a spatial discretization. Copyright q 2006 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Engineers are always looking for methods to increase the heat-transfer rate into fluids in motion.
For fluids with low to moderate viscosity the heat-transfer rate into them is usually increased in
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processes by the promotion of turbulence. This is usually done by violent agitation; the impeller
shape and its angular velocity are critical parameters there. For highly viscous fluids the situation
is different. Although one can in principle also try to promote turbulence, this solution is not
viable because it leads to very high pressure drops (and thus high energy costs) and in some cases
the stresses created are sufficient to break long molecular chains and degrade the fluid properties.
An efficient way to increase the heat transfer rate into viscous fluids is to promote chaotic advection
or Lagrangian turbulence [1–3]. This phenomenon can be described as chaotic particle trajectories
(as in turbulence) in a flow dominated by viscous forces. From an Eulerian point of view the flow
is periodic; however, from a Lagrangian point of view the flow is chaotic or periodic depending
on the initial location of a given material point [4].

In this work we seek to determine how to displace time-periodically the boundaries in 2-D
annular Stokes flows so that the heat transfer rate into the fluid is a maximum. This requires the
calculation of the steady periodic state in either one of the two geometries discussed in Section 2.
There we present the necessary known information and results required to fully understand some
of the choices made in this study. The direct numerical method to obtain the steady-periodic
temperature profile in the annular regions is discussed in the next section. The method employed
here is based on one used to optimize periodic adsorption processes. The results obtained are
discussed in Section 4. They show that there is an optimum modulation frequency for which the
heat transfer rate into the fluid is a maximum. Other analytical/numerical tools that have been
developed for the study of chaotic advection confirm the results obtained here.

2. TWO-DIMENSIONAL FLOW GEOMETRIES

Consider the annular region between eccentric cylinders as shown in Figure 1(a). Two dimen-
sionless parameters are required to completely describe this geometry: the clearance ratio, Ro/Ri,
and the eccentricity ratio, �= e/(Ro − Ri), where e is the distance between the centres of the two
cylinders. The annular region is filled with a highly viscous liquid and the inner and outer cylinders
can both rotate at a constant angular velocity. In any geometry, when inertial forces can be neglected,
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Figure 1. Diagram showing the annular region between: (a) eccentric rotating cylinders; and (b) gliding
confocal ellipses. In the latter case the walls glide circumferentially so that the geometry is invariant

in time. �i and �o represent the angular velocity of the inner and outer boundaries, respectively.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:915–931
DOI: 10.1002/fld



OPTIMIZATION OF HEAT-TRANSFER RATE 917

the flow field can be obtained by solving the Stokes equations

∇P = �∇2V, ∇ · V= 0 (1)

where � is the fluid viscosity and P is the pressure.
The journal bearing problem described by the geometry of Figure 1(a) is more than a century

old and was first studied by Reynolds [5] and Sommerfeld [6]. Jeffery [7] and, later (but with
all the expressions for the constants), Ballal and Rivlin [8] obtained the analytical solution in
closed form using a bipolar, orthogonal coordinate system. Two other analytical solutions have
appeared in the literature: Wannier [9] used a mixed Cartesian-cylindrical non-orthogonal system
of coordinates and DiPrima and Stuart [10] used an orthogonal, modified bipolar coordinate system
which degenerates into polar coordinates as the eccentricity tends towards zero.

The streamlines obtained using the analytical solution of Ballal and Rivlin [8] are plotted in
Figure 2 and they correspond to: (a) outer cylinder rotation, (b) inner cylinder rotation, (c) counter-
rotation, and (d) co-rotation. An examination of Figure 2 shows that the flow separates into two

Figure 2. Streamlines between eccentric, rotating cylinders: (a) outer cylinder rotation;
(b) inner cylinder rotation; (c) counter-rotation (�i/�o = − 2); and (d) co-rotation

(�i/�o = 3). The geometric parameters are: Ro/Ri = 2, �= e/(Ro − Ri)= 0.7.
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(cases (a) and (b)) or three regions (cases (c) and (d)). Neither case can be considered as a good
mixer since fluid in one region remains there and cannot flow into other regions. For all cases the
streamlines are symmetrical around an axis passing through the centres of both cylinders, this is
a consequence of the reversibility of Stokes flows.

Let us consider the flow topology of the counter-rotation case in more detail. When the cylinders
turn in opposite directions there are three flow regions: one turning with the inner cylinder, one
turning with the outer cylinder and a vortex zone. Furthermore, a homoclinic saddle point appears
in the region of minimum gap. Now, it is well known [4] that if a homoclinic saddle point is
perturbed (e.g. by continuously varying the angular velocity ratio) then fluid is allowed to flow
from one zone to the other and, as we shall see later, this also leads to an enhancement of the heat
transfer rate into or out of the fluid.

The plotted solution for co-rotation, shown in Figure 2(d) also shows two saddle points connected
by two different streamlines. However, as the angular velocity ratio is varied, the saddle points
remain in the same region. Upon perturbation, only fluid in the vicinity of the saddle point can
be transported into another region. In the counter-rotating case, by varying the angular velocity
ratio over the widest possible range so that the saddle point moves from the inner to the outer
boundary, practically all the fluid contained in the annular region can be transported from one
region to another.

Because fluid is transported from one flow region into another in the vicinity of a saddle point,
one must look for two-dimensional flows exhibiting more of these saddle points. For this reason
the flow configuration shown in Figure 1(b) was imagined [11]. It consists of the annular region
between two confocal ellipses, the inner and outer boundaries glide along their circumference so
that the geometry is invariant. Notice that there are two area increases (or decreases) for flow
passage per turn in this geometry, while there is only one in the journal bearing flow.

To analyse this flow one must first define an appropriate coordinate system. Elliptical cylindrical
coordinates defined by the transformations

x = a cosh u cos v, y = a sinh u sin v, z = z (2)

are orthogonal and each boundary is described by a fixed value of the coordinate u. For Stokes
flow, and with the boundaries gliding at constant velocity so that the geometry is invariant, the
solution of Equation (1) for the velocity vector V= (Vu, Vv) in elliptical cylindrical coordinates
was obtained by Saatdjian et al. [11, 12].

In Figure 3 we show streamlines for six different cases of steady boundary motion. As shown
in Figure 3(c), when the boundaries move in opposite directions, two heteroclinic saddle points
joined by two different streamlines appear in the regions of minimum gap. Since transport of fluid
from one flow region to another occurs in the vicinity of a disrupted saddle point, one expects that
chaotic transport in this flow geometry (with two saddle points) will be greater than in the journal
bearing flow.

To quantify chaotic mixing/heat transfer into a fluid a very simple experiment can be imagined.
Let us assume that the inner and outer boundaries (of any geometry) are at two different tempera-
tures, Ti and To, respectively, and that the boundaries are both turning at a constant velocity. The
temperature profile in the annular region can be obtained numerically by solving the dimensionless
advection-diffusion equation

V · ∇T = 1

Pe
∇2T (3)
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Figure 3. Streamlines for the steady flow between confocal gliding ellipses. The geometrical parameters and
the angular velocity ratio are: (a) ao/ai = 2, bi/ai = 0.5, �i = 0, �o = 3; (b) ao/ai = 2, bi/ai = 0.5, �i = 3,
�o = 0; (c) ao/ai = 2, bi/ai = 0.5, �i/�o = − 3; (d) ao/ai = 2, bi/ai = 0.5, �i/�o = 3; (e) ao/ai = 1.5,

bi/ai = 0.15, �i/�o = 200; and (f) ao/ai = 2, bi/ai = 0.1, �i/�o = 500.

where Pe is the Péclet number. After obtaining the steady-state temperature field one can calculate
the average Nusselt number which is defined as

Nu = (heat flux)convection
(heat flux)conduction

(4)
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Figure 4. Nusselt number, Nu, as a function of Péclet number, Pe= 2�Ro�o(Ro − Ri)/�, for the steady
counter-rotating journal bearing flow with Ro/Ri = 2. The plot is given for three values of � and two

values of the angular velocity ratio: �i/�o = −1 (solid circles) and �i/�o =−2 (open circles).

Using the analytical velocity field and solving the advection-diffusion equation to obtain the
temperature field one can calculate the average Nusselt number in the annular region. Figure 4
shows the Nusselt number in the journal bearing as a function of Péclet number for different
values of the eccentricity ratio and the angular velocity ratio. The Nusselt number is greater than
unity because the circulation zone mixes fluid in it so that the temperature there is practically
constant. This leads to a heat-transfer rate increase, as evidenced by the higher temperature gra-
dient at both walls. This is shown in Figure 5 where the radial temperature profile is plotted in
the regions of minimum and maximum gap. In Figure 4, as the eccentricity ratio increases, the
size of the vortex zone increases so that the heat transfer enhancement by slender recirculation
increases. This is also the case when the absolute value of the angular velocity ratio |�i/�o|
increases.

So far the heat-transfer rate enhancement into the fluid has been due to the formation of a
vortex zone. To increase the heat transfer rate even further one must allow fluid to go from one
region to the other. One way to do this is to perturb the hyperbolic saddle point, e.g. by varying
time-periodically the instantaneous angular velocity ratio of the two cylinders. Another possibility
is to allow the inner cylinder to both turn and move [13]. Here, we chose to vary sinusoidally the
inner cylinder angular velocity around a mean value �i. The modulation protocol is

�i(t) =�i(1 + � sin �t) (5)

where � is the amplitude and � is the modulation frequency. When the cylinders turn in opposite
directions, the streamlines show that a saddle point appears in the region of minimum gap, as
mentioned earlier. If the angular velocity ratio is increased, the saddle point moves from the inner
cylinder towards the outer boundary, but the flow topology remains the same. Obviously, the best
modulation protocol is one whose average angular velocity ratio varies over the widest possible
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Figure 5. Dimensionless radial temperature distribution in the regions of: (a) minimum; and (b) maximum
gap between eccentric, counter-rotating cylinders. The geometric parameters and the angular velocity ratio
are: Ro/Ri = 2, �= e/(Ro−Ri)= 0.5, �i/�o = −2. The Péclet number is Pe= 2�Ro�o(Ro−Ri)/�= 1000,

where � is the thermal diffusivity of the fluid.

range so that the saddle point moves from the inner boundary to the outer one [14], i.e. the value
of |�i/�o| is large, though Stokes flow conditions must prevail.

However, one must also determine the appropriate modulation frequency so that the heat trans-
fer rate into the fluid is a maximum. To do this one must solve the time-periodic conservation of
energy equation,

�T
�t

+ V · ∇T = 1

Pe
∇2T (6)

to determine the temperature field over a period. The modulation is assumed to be sufficiently
slow so that the velocity field V(u, v, t) is determined by solving the Stokes equations at the
instantaneous value of the angular velocity ratio. This can be written mathematically as

V(u, v, t) ≈V(u, v)|�i(t)/�o (7)

This assumption is valid as long as the Strouhal number is small, i.e. Sr = �L/V � 1 (V is a
characteristic velocity, e.g. V =�oRo, and L is a characteristic length, say L = Ro − Ri).

After a sufficient number of modulation periods, the system reaches a steady periodic state
where conditions at the end of the period are the same as those at the beginning. In mathematical
terms the steady periodic state can be expressed in the following way:

T (u, v, 0) = T (u, v, �) ∀u ∈ (ui, uo), v ∈ (0, 2�) (8)

where � = 2�/� is the duration of the modulation period.
To measure the heat-transfer rate into the fluid it is convenient to define an instantaneous Nusselt

number, which is the ratio of the heat transfer rate in the actual flow to the heat transfer rate if
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the boundaries are motionless (i.e. a pure conduction heat transfer rate):

Nu(t) = uo − ui
To − Ti

∫ 2�

0

(
�T
�u

)
ui,uo

dv (9)

As the system reaches the steady periodic state, the mean Nusselt number per period,

Nu(t) =
∫ t+�

t
Nu dt ′ (10)

tends asymptotically towards a fixed value, Nu(∞), which must be rendered a maximum.

3. DIRECT METHOD TO OBTAIN THE STEADY PERIODIC STATE

To determine the steady periodic state of a given two-dimensional flow with time-periodic bound-
ary conditions it is usual to replace the spatial derivatives by algebraic equations resulting from a
suitable discretization and then to solve the obtained dynamical system [12, 15, 16]. An arbitrary
initial condition is chosen and the ordinary differential equations are then integrated until the
steady periodic state is established. This methodology based on the ‘method of lines’ [17, 18]
can be very time-consuming if the modulation frequency is high and/or if the fluid conducts heat
poorly.

Mathematically, to determine the value of Nu(∞) one must solve numerically Equation (6) for
a long period of time, i.e. one must calculate successive values of the average Nusselt number Nu
at the inner (i) and outer (o) walls,

Nui(k�), Nuo(k�), k = 0, 1, 2, . . . (11)

until both values are invariant. Calculations are stopped when the following conditions are satisfied:

|Nui((k + 1)�) − Nui(k�)| < TOL and |Nuo((k + 1)�) − Nuo(k�)| < TOL (12)

where TOL is a predefined maximum tolerance value accepted in the calculation of Nu(∞). In
theory one must obtain that

Nui(∞)= Nuo(∞) = Nu(∞) (13)

This condition, however, cannot be verified precisely since all discretization methods involve a
given approximation. Nevertheless, values which differ by less than 1% have been reported in the
literature [12].

The integration of the equations during a whole period is equivalent to establishing a transfor-
mation H(·) such that, for given initial conditions, one solves for the steady periodic state at the
end of the period:

T (u, v, �) =H(T (u, v, 0)) ∀u ∈ (ui, uo), v ∈ (0, 2�) (14)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:915–931
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The usual method to determine the steady periodic state can be interpreted as a method to force
the periodicity condition through a successive substitution scheme:{

T [k](u, v, �) =H(T [k](u, v, 0))

T [k+1](u, v, 0) = T [k](u, v, �)
∀u ∈ (ui, uo), v ∈ (0, 2�), k = 1, 2, . . . (15)

This method has the advantage of correctly simulating the heat transfer dynamics as the steady
periodic state is reached. Nevertheless, given the first-order accuracy of this iteration process,
a great number of periods is usually necessary to reach the final steady periodic state.

Obtaining the steady periodic state of a given system by a direct method is an important
topic in many engineering fields and in applied mechanics. For example, Smith and Wester-
berg [19] suggested the use of an iterative Newton’s method to solve systems of equations of
the type

�(x, 0) − H(�(x, 0))= 0 (16)

where � represents the set of dependent variables and x is the spatial domain. The iteration process
begins with three cycles of successive substitution in order to construct a diagonal approximation
of the Jacobian system matrix. The matrix inverse is calculated at each step using a formula based
on the secant method.

Theoretically the main advantage of Newton-type iterative algorithms is to obtain supralinear
convergence rates near the solution. However, in most applications, evidence shows that a satis-
factory result is only obtained when one begins and calculates at each step an accurate value of
the Jacobian. In practice this implies that the Jacobian must be calculated using finite differences
at the first iteration and occasionally in all subsequent ones. In the present case this method is
prohibitive given the dimension and the sparse structure of the transformation H(·). To overcome
these difficulties, Croft and LeVan [20] suggested that the Jacobian of Equation (16) be calculated
by a method based on the integration of the sensitivity equations

��(x, t)

��(x, 0)
, t ∈ (0, �) (17)

in conjunction with the differential system which models the system dynamics. This can be done
by applying Newton’s method to the solution of Equation (16), and this guarantees a quadratic
convergence rate near the solution if the sensitivity equations are calculated with enough accuracy.
The main disadvantage of this method is that the computational time can increase considerably
due to the dimension and the sparse nature of the sensitivity matrix. As a rule of thumb, one
can state that Newton’s method is competitive only if the number of iterations is reduced by
a factor of at least two or three orders of magnitude with respect to the method of successive
substitution.

In the optimization of periodic adsorption processes, Nilchan and Pantelides [21] recently
suggested a method where the spatial and the temporal domains are discretized and the time-
periodic boundary condition is directly imposed. The discretization results in a sparse system of
algebraic equations, which can be solved numerically to determine directly the steady periodic
state. This method was employed in this work.

In practice, the modulation period was divided into nk time-steps (Figure 6) with duration
�t = �/nk and the temperature time derivative �T/�t was discretized using a second-order
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Figure 6. Schematic representation of the circular temporal domain of duration �,
divided into nk time-steps of length �t = �/nk .

backward finite-difference formula:

�T (u, v, t)

�t

∣∣∣∣
tk

= 3T (u, v, tk) − 4T (u, v, tk−1) + T (u, v, tk−2)

2�t
, k = 3, . . . , nk (18)

Imposing the time-periodic boundary condition directly permits us to obtain approximation
formulas for �T/�t for the first two time-steps of the cycle:

�T (u, v, t)

�t

∣∣∣∣
t1

= 3T (u, v, t1) − 4T (u, v, tnk ) + T (u, v, tnk−1)

2�t

�T (u, v, t)

�t

∣∣∣∣
t2

= 3T (u, v, t2) − 4T (u, v, t1) + T (u, v, tnk )

2�t

(19)

Briefly, the discretization of the temporal domain substitutes Equation (6) by a system of partial
differential equations

Fu,v(T) = 0, T(u, v) = [T1(u, v), . . . , Tnk(u, v)] (20)

where only the spatial coordinates appear and where the periodic condition is implicit. In Equation
(20), Tk(u, v) represents the thermal field T (u, v, tk) at time instant tk .

For simplicity we have adopted a regular spatial grid. The finite-volume method [22] was imple-
mented. The diffusion terms (∇2T/Pe) were approximated by second-order centred finite differ-
ences, while the advection terms V·∇T were discretized using the flux-limiter harmonic scheme of
van Leer and implemented as suggested by Waterson and Deconinck [23]. For example, assuming
that Vv(ui , v j+1/2, tk)>0 then the flux-limiter scheme for the face value T (ui , v j+1/2, tk) ≡ Ti, j,k
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is implemented as

Ti, j+1/2,k = Ti, j,k + max{0, (Ti, j+1,k − Ti, j,k)(Ti, j+1,k − Ti, j,k)}
Ti, j+1,k − Ti, j−1,k

(21)

The flux limiter prevents the appearance of artificial oscillations in the numerical solution when
the Péclet number is high. The main drawback is that the formula is non-linear in the interpolated
variables.

After spatial discretization, Equation (20) reduces to a sparse system of non-linear algebraic
equations

F(T)= 0, T=[Ti jk] (i = 1, . . . , ni ; j = 1, . . . , n j ; k = 1, . . . , nk) (22)

where Ti jk represents the value of the temperature T (ui , v j , tk) in grid point (ui , v j ) of the domain
at time-instant tk . This algebraic system was solved using a traditional Newton’s method:

(
�F(T)

�T

)[n]
�T[n+1] =−F(T[n]), T[n+1] =T[n] + �T[n+1] (23)

where (�F(T)/�T)[n] is the Jacobian matrix of the system calculated at point T[n]. In a parametric
study, it is convenient if the initial estimate of the solution, T[0], is the final solution obtained for
the previous value of the parameter. This procedure guarantees convergence and reduces the total
number of iterations.

Notice that for the particular case of Equation (6), the Jacobian depends on T due to the non-
linear discretization of the convective terms using the flux-limiter scheme. To prevent repetitive
calculations of the Jacobian without penalizing the convergence of Equation (23), we substituted
the original Jacobian with an invariant approximation using a first-order upwind finite-difference
discretization of the convective terms. Apart from simplicity, this is the only linear scheme which
does not introduce artificial oscillations in the numerical solution for high Péclet numbers inde-
pendently of grid resolution. The drawback is the excessive smoothness of the solution due to
the addition of numerical diffusion. In this case, this drawback is irrelevant because the method
is only used to determine the approximate Jacobian. The vector F(T[n]) was calculated using the
flux-limiter scheme. In summary, we substituted Equation (23) with the iterative process

A�T[n+1] =−F(T[n]), T[n+1] =T[n] + �T[n+1] (24)

where A= (�F ′(T)/�T) is the invariant matrix of the Jacobian resulting from the discretization
of the convective terms using a first-order upwind finite difference formula.

The sparse linear system given by Equation (24) was solved using an implicit alternating-
direction method ADI [24], in conjunction with a multi-grid method [25, 26]. Despite the fact that
the ADI method eliminates local (high frequency) errors quickly, global errors (low frequency)
are reduced at a rate inversely proportional to the grid size. Consequently the propagation of
global corrections of the solution, for a great number of control volumes, occurs slowly and during
many iterations. Multi-grid methods accelerate the convergence of the linear system through the
calculation of corrections at a series of levels with progressively more refined grids. The use of
these methods reduces significantly the number of iterations and the total CPU time necessary for
the convergence of the solution.
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The multi-grid techniques are based on the principle that the global error (low frequency) which
exists in a refined grid can be represented in a less refined grid in the form of a local error (high
frequency). With a less refined grid, i.e. with fewer cells, global corrections can be transmitted
faster between adjacent grids. Since the cost of the calculations in both CPU time and in employed
memory decays exponentially with the use of less refined grids, the global error can be eliminated
efficiently. When the primary grid is structured, the associated grids at less refined levels are easier
to construct since one only needs to suppress lines at regular intervals.

Basically, the calculation of level corrections with the larger grid requires the transfer of residue
from the primary grid at the higher level (restriction), the calculation of corrections and their transfer
back to the original grid at the higher level (prolongation). The restriction and the prolongation
operators used in this work are based on the additive correction strategy described by Hutchinson
and Raithby [27].

4. RESULTS AND DISCUSSION

The method described in the previous section was used to determine the influence of the modulation
frequency on the value of Nu(∞) for the two 2-D periodic flows discussed earlier. The grid
size employed in both geometries is 40× 80× 50 (u, v, t), which gives a time step �t = �/50.
Notice that the time domain extends over a single period of modulation and is independent of
the frequency. This is in contrast to the traditional approach of numerical integration over a large
number of modulation periods to determine the asymptotic time-periodic solution.

For the journal bearing flow with very small clearance ratios, the values of Nu(∞) that we
calculated are almost identical to those calculated by Ghosh et al. [15]. This is a first test in order to
validate our methodology. For the confocal elliptic geometry, the values obtained were compared
with success to those of Saatdjian et al. [12]. In other cases, we compared our results to those
obtained by integrating the dynamical system using the method-of-lines approach. In all cases the
difference between the values at each boundary was less than 1%. One must note that the method
employed here to obtain the steady periodic state directly, with as initial estimate the periodic
thermal field obtained at a neighbouring frequency value, was an order of magnitude faster than
the traditional method.

Figure 7 shows the percentage increase in the value of Nu(∞) as a function of � with respect
to the value obtained with no modulation of �i, for the journal bearing flow with Ro/Ri = 2 and
Pe= 1000. For each of the three values of the eccentricity ratio �, the two curves plotted are for
values of �i/�o = − 1 and −1.5. In this flow, a compromise must be found in the choice of
the eccentricity ratio �. For small values of � the vortex zone is small and the heat transfer rate
increase is thus also small because it is proportional to the size of the vortex. If the inner boundary
is correctly modulated one can see that the increase of the heat transfer rate is of about 10%.

When the value of � is high, the heat transfer rate increase due to the vortex is high. Modulating
the inner cylinder velocity can lead to a slight decrease of the heat transfer rate. For this reason
Kaper and Wiggins [14] concluded that the best gains are obtained for a small value of � and an
angular velocity protocol which varies over a very wide range.

Figure 8 shows curves similar to those of Figure 7, for the flow between confocal ellipses defined
by ao/ai = 2 and Pe= 1000. Each curve shows the dependence of Nu(∞) with � for three values
of the inner ellipse eccentricity � and two values of the average angular velocity ratio. In this
geometry the gain obtained by an appropriate modulation of the inner ellipse angular velocity is
significant and can reach 40% when the inner ellipse eccentricity is small.
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and Péclet number Pe= 2�Ro�o(Ro−Ri)/�= 1000. The angular velocity modulation of the inner cylinder
is �i(t)= �i(1 + 0.9 sin�t). The figure shows the dependence of Nu(∞) with � for three values
of � = e/(Ro − Ri) and two values of the average angular velocity: �i/�o =−1 (filled circles) and

�i/�o =−1.5 (open cylinders). The lines were obtained by interpolation of the simulation results.
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Figure 9. Stretching distribution for the 2-D periodic flow between confocal ellipses. The geometric
parameters are: ao/ai = 2 and bi/ai = 0.5. The outer ellipse angular velocity is �i(t)= �i(1+ 0.9 sin�t),
with a mean value �i/�o =−2. Black dots indicate the initial position of the particles which stretch
more than a critical value log10 	c = 10. The dimensionless modulation frequency �/�o, for each case is:

(a) 0 (without modulation); (b) 16/30; (c) 32/30 (optimum frequency); and (d) 64/30.

The existence of an optimummodulation is corroborated graphically by calculating the stretching
field. The stretching distribution is directly proportional to the mixing intensity of a material point
in each region of the flow. Material points subject to high stretching rates correspond to regions
with good micro-mixing and vice versa. The first stretching calculations for the journal bearing
flow were done by Swanson and Ottino [28], who used a discontinuous angular velocity protocol.

To determine the stretching field in the flow between confocal ellipses, a large number of tracer
particles was evenly distributed over the whole annular space. The stretching vector l associated
with each particle was then monitored during 30 turns of the outer wall. To calculate the total
cumulative stretching of each particle an initial unit stretching vector, l0 ≡ [l�, l
]0 =[√1/2,

√
1/2],

was assigned to it and integrated

dl/dt = (∇v)T · l (25)

as the particle was transported by the flow. The total stretching accumulated per particle is defined as
	 =‖l‖/‖l0‖. It should be pointed out that these calculations are considerably more time consuming
than the solution of the steady periodic heat-transfer problem using the full discretization method.
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Figure 10. Poincaré sections for the 2-D periodic flow between confocal ellipses,
obtained by recording the position of a material point at the end of each full turn
of the outer ellipse for six different initial conditions and 6000 iterations. The
geometric parameters are: ao/ai = 2 and bi/ai = 0.5. The outer ellipse angular
velocity is �i(t)= �i(1 + 0.9 sin�t), with a mean value �i/�o = − 2. The
dimensionless modulation frequency �/�o, for each case is: (a) 0 (without

modulation); (b) 16/30; (c) 32/30 (optimum frequency); and (d) 64/30.

Figure 9 shows a monochrome plot of the stretching field for four values of the modulation
frequency �. The values of � were chosen so that we could compare with Figure 8 and correspond
to four distinct situations: (a) without any modulation, (b) low frequency, (c) optimum frequency,
and (d) high frequency. The tracer particles which have high stretching (log10 	>10) are plotted in
black at their initial position while particles which have low stretching (log10 	<10) are plotted in
white. In all plots the same cut-off value (log10 	c = 10) was employed. In agreement with other
authors [28], the plots were found to be relatively insensitive to the choice of cut-off value 	c.
One must note that for the optimum frequency practically the whole annular region is covered by
high stretching zones. This analysis tool shows the relationship which exists between mixing rate
and heat transfer rate for this type of two-dimensional flow.

Finally, Poincaré sections are plotted in Figure 10 for the same four cases of Figure 9. A Poincaré
section records the position of an arbitrary initial condition at the end of each period. To obtain the
plots shown in Figure 10, six initial conditions were chosen initially and their positions at the end
of each period were recorded, the program was run for 1000 periods. For two-dimensional chaotic
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flows, Poincaré sections show the regions where tracer will never go. If the initial condition is
initially on a chaotic region, the position at the end of each period will change each time. If the
initial condition is placed in a regular region it will follow a close orbit depending on the period
of the orbit. Although very useful in determining regular and chaotic regions, Poincaré sections
do not give an indication of mixing rate. Nevertheless, one must note the similarity between the
plots of the Poincaré sections in Figure 10 and the stretching distributions displayed in Figure 9.

5. CONCLUSIONS

The steady periodic solution of the conservation equations in two-dimensional periodic flows
was obtained numerically. The direct method employed to obtain the steady periodic fields is
computationally more efficient, by an order of magnitude, than the integration of the energy
equation. The wall-to-fluid heat-transfer rate was determined by calculating an average Nusselt
number per period. This parameter depends on the modulation frequency and was determined for
two different flows, the journal bearing flow and the flow between confocal gliding ellipses. For
each flow there is an optimum modulation frequency for which the Nusselt number is a maximum,
this also corresponds to conditions where mixing by chaotic advection is most efficient. Two other
qualitative tools, stretching calculations and Poincaré sections confirm the results obtained above.
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confocal ellipses. Physics of Fluids 1996; 8:677–691.
13. Finn MD, Cox SM. Stokes flow in a mixer with changing geometry. Journal of Engineering Mathematics 2001;

41:75–99.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:915–931
DOI: 10.1002/fld



OPTIMIZATION OF HEAT-TRANSFER RATE 931

14. Kaper T, Wiggins S. An analytical study of transport in Stokes flows exhibiting large-scale chaos in the eccentric
journal bearing. Journal of Fluid Mechanics 1993; 253:211–243.

15. Ghosh S, Chang HC, Sen M. Heat transfer enhancement due to slender recirculation and chaotic transport
between counter-rotating eccentric cylinders. Journal of Fluid Mechanics 1992; 238:119–154.

16. Lefevre A, Mota JPB, Rodrigo AJS, Saatdjian E. Chaotic advection and heat transfer enhancement in Stokes
flows. International Journal of Heat and Fluid Flow 2003; 24:310–321.

17. Carver MB. Method of lines solution of differential equations—fundamental principles and recent extensions.
In Foundations of Computer-Aided Process Design, Mah RSH, Seider WD (eds). Engineering Foundation:
New York, New Hampshire, 1981; 369–402.

18. Schiesser WE. The Numerical Method of Lines. Academic Press: New York, 1991.
19. Smith IV OJ, Westerberg AW. The optimal design of pressure swing adsorption processes. Chemical Engineering

Science 1991; 46:2967–2976.
20. Croft DT, LeVan MD. Periodic states of adsorption cycles—I. Direct determination and stability. Chemical

Engineering Science 1994; 49:1821–1829.
21. Nilchan S, Pantelides CC. On the optimisation of periodic adsorption processes. Adsorption 1998; 4:113–147.
22. Patankar SV. Numerical Heat Transfer and Fluid Flow. McGraw-Hill: New York, 1980.
23. Waterson NP, Deconinck H. A unified approach to the design and application of bounded higher-order convection

schemes. Numerical Methods in Laminar and Turbulent Flow, Taylor C, Durbetaki P (eds), vol. 9. Pineridge
Press: Swansea, 1995; 203–214.

24. Wachpress SL. Iterative Solution of Elliptic Systems. Prentice-Hall: Englewood Cliffs, NJ, 1966.
25. Briggs WL, Henson VE, McCormick SF. A Multigrid Tutorial (2nd edn). SIAM: Philadelphia, PA, 2000.
26. Trottenberg U, Oosterlee CW, Schuller A. Multigrid: Basics, Parallelism and Adaptivity. Academic: San Diego,

CA, 2000.
27. Hutchinson BR, Raithby GD. A multigrid method based on the additive correction strategy. Numerical Heat

Transfer 1986; 9:511–537.
28. Swanson PD, Ottino JM. A comparative computational and experimental study of chaotic mixing of viscous

fluids. Journal of Fluid Mechanics 1990; 213:227–249.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:915–931
DOI: 10.1002/fld


